REMOTE VIEWING BY COMMITTEE: RV USING A MULTIPLE AGENT / MULTIPLE PERCIPIENT DESIGN

BY LANCE STORM

ABSTRACT: Remote Viewing (RV) using a multiple-agent/multiple-percipient design was attempted by a team of professional and amateur paranormal investigators. The study was divided into 2 stages. Each stage consisted of 2 parts: (a) a single-agent mode and (b) a multiple-agent mode. It was hypothesized that a committee of 3 agents would produce a stronger RV effect than a single agent. In both modes, a committee of 3 perciipients was used. Stage 1 was run mainly to test the methodology, and for Stage 2 necessary changes were made to the perciipients' visualization techniques. A total of 20 randomly selected sites were visited by the agent(s), and on each occasion, perciipients privately recorded their mentations for each site, and the 3 mentation reports were then combined into a single report pertinent to each site (the mentations of individual perciipients could not be identified in the combined report). Mentation reports were independently judged. In Stage 1, the directional hypothesis was not supported—the RV effect produced in the three-agent mode was not better than that produced in the single-agent mode. However, in Stage 2, the directional hypothesis was supported, although the performance of three agents was not significantly better than the single agent's performance. Evidence was found in two of three tests that a change in pro attitude may bring about a change in RV performance. The RV effect (expressed as $ES = z / \sqrt{n}$) replicated that of the mean ES norm for the free-response domain found by J. Milton.

The basic idea of 'seeing' or sensing beyond normal sensory modalities is an old one (see Mental Radio by Upton Sinclair, 1950/1962), but Targ and Puthoff (1974) are recognized as having renewed the interest in the concept. They also originated the term Remote Viewing (RV) to describe this form of ESP. Thalbourne (1982) defines remote viewing as "a neutral term for GESP . . . especially in the context of an experimental design wherein a perciipient attempts to describe the surroundings of a geographically distant agent" (p. 67). Targ and Puthoff (1974) achieved considerable success with their RV experiments at the Stanford Research Institute (SRI) using such star subjects as Hella Hammid and Ingo Swann (note, however, that Targ & Puthoff also used unselected subjects). A television documentary film, The Case of

The author thanks Alison Brucer, Jeff Fausch, and Colin Mitchell for their assistance as perciipients; Ashley Harbutt and Cheryl Hyland for their assistance as agents; Brian Williams as transcript assessor; and Dr. Michael A. Thalbourne and Ray Pasetto as independent judges. The author also thanks the two reviewers for advice and additional review material.
ESP, was made which highlighted the successes of Targ and Puthoff (Edwards, 1984). But Targ and Puthoff's more intriguing results came in the form of the impressive RV achieved by retired police commissioner Pat Price, who was not only able to see gross objects (i.e., furniture, buildings, etc.), but was even able to read text concealed in folders or envelopes inside filing cabinets (see Targ, 1996).

Many hundreds of RV experiments were carried out at SRI between 1972 and 1986. Accounts of this work (including the work with Pat Price) have been published on separate occasions by both Targ (1996) and Puthoff (1996). Targ pointed out that RV was not affected by distance, size of target, or electromagnetic shielding around the subject, and Puthoff described RV work initiated by the intelligence community (i.e., the CIA). However, Marks (2000) has criticized these experiments by SRI scientists. He noted that (i) selections of targets were made without replacement, (ii) transcripts were not edited of material that could give cues to the judge, and (iii) transcripts were not always randomly presented to the judges.

Experimentation with RV has continued elsewhere. While serving in the US Army, Joseph McMoneagle (1997) joined a top-secret military program, code-named STARGATE, to develop and apply RV skills for the purposes of maintaining national security. He spent 20 years refining these skills, and has also discussed the various methodologies and protocols that facilitate RV (McMoneagle, 2000). Two examples are Extended Remote Viewing (ERV) and Controlled Remote Viewing (CRV). ERV uses meditative methods to reach a semi-trance state or dissociative state, both of which are meant to help establish a connection with the target. The remote viewer then reports whatever is being seen, felt, heard, or otherwise perceived. CRV is meant to counter the problem that information can be tainted by false data, such as fantasy and emotional reactions. McMoneagle is of the opinion that to recognize and willfully use the psychic information in an unspoiled way requires that the remote viewer must learn to respond through writing or relating the RV information directly before it is modified by "cognitive interference" (p. 98). McMoneagle (1997) believes that remote viewing can be learned, and that the basic ability is innate in most people, but may need refining.

McMoneagle is also of the opinion that RV is one of the most reliable methods of information retrieval. However, the STARGATE work was evaluated by the American Research Institute (AIR) in an official report (Mumford, Rose & Goslin, 1995), and their conclusion was that the project was too costly ($20 million) to justify the results it produced. McMoneagle's (1997) major criticism of the AIR report was that it (i) was not written by experts in the RV field; (ii) was based on only 1% of all documentation (the declassified component); and (iii) relied
on extremely limited nonrandom interviews with agencies working in the final year of a nineteen-year period; "the single worst year in the unit's history" (p. 221).

RV work has also been conducted by Marilyn Schlitz and her colleagues (see Schlitz & Gruber, 1980; Schlitz & Haight, 1984), and the Princeton Engineering Anomalies Research (PEAR) lab (see Dunne, Dobyns, & Inttner, 1989; Dunne, Jahn, & Nelson, 1983; Jahn & Dunne, 1987). Schlitz and Gruber (1981) had to publish a reworking of one of their experiments because the judges received information from the agent. The PEAR lab work has been criticized for statistical and methodological flaws (see Hansen, Utts, & Markwick, 1992; Dobyns, Dunne, Jahn, & Nelson, 1992). Problems identified include randomization failure and potential cheating. Nevertheless, having considered these critical reports, Schmeidler (1994) concluded that the overall evidence was indicative of a remote viewing procedure that is psi conducive.

From 1973 to 1994, further RV work was done at the Scientific Applications International Corporation (SAIC). Utts (1995a, 1995b, 1996a, 1996b) and Hyman (1995, 1996), in their reviews of the ten most methodologically sound experiments conducted at SAIC between 1992 and 1994, found that six of these were RV studies, but in all ten cases the same judge was used; a factor which Utts and Hyman agreed was a serious weakness. Hyman (1996) added that RV work has not been sufficiently and "independently replicated" for any kind of evaluation to be considered "adequate" (p. 31).

Since 1985, a number of meta-analyses have been conducted in order to help bring to a finer focus the experimental history of parapsychological research that has been conducted since 1935. Similar to the remote viewing paradigm is the free-response experiment,1 which tests participants in a "normal, waking state of consciousness," as does RV (Milton, 1998, p. 31). Milton (1998) meta-analyzed all available free-response studies published during the period 1964–1993 (these studies included remote viewing studies). She found a mean effect size for 78 studies of 0.16 (z = 5.72, p = 5.33 x 10⁻⁸). A homogenized database of 75 studies had an ES of 0.17 (z = 5.85, p = 2.46 x 10⁻⁸).

It is important to make mention here of the ganzfeld paradigm which is indirectly related to the RV paradigm because it involves the use of an altered state of consciousness (i.e., relaxation) in its methodology, but nevertheless utilizes the free-response technique. Milton (1998) wondered if the large effect sizes in the ganzfeld domain were due to the ganzfeld technique or to the free-response methodology.

1 Free response is a term that "describes any test of ESP in which the range of possible targets is relatively unlimited and is unknown to the percipient" (Thalbourne, 1982, p. 28).
itself as used in ganzfeld research. When Milton compared mean effect sizes between her database and Honorton’s (1985) database, there was no significant difference. She concluded that there was no basis for assuming that the ganzfeld condition provided a more superior method of eliciting psi than the standard free-response protocol. Although there has been much dispute over the reliability of the ganzfeld databases (not to be covered here, but see Bem, Palmer, & Broughton, 2001; Honorton 1985; Hyman, 1985; Milton & Wiseman, 1999, 2001, 2002; and Storm & Ertel, 2001, 2002), evidence is still strong that the ganzfeld and free-response procedures underpin the most successful experimental domains in parapsychology. Specifically, Storm and Thalbourne (2000) noted that both the ganzfeld and the free-response domains were second only to DMILS (Direct Mental Interaction with Living Systems) as far as sizes of effects were concerned.

In regard to the present study, a variation of the so-called committee effect in the context of an RV experiment was attempted as an alternative to the single-agent/single-percipient mode, for reasons outlined shortly. D. Scott Rogo (1986) was the first to refer to a committee effect, having actually coined the term PK by committee (p. 126). This effect refers to a group consisting of individuals all aiming at achieving one and the same paranormal goal. Rogo believed that a group of individuals “might be able to produce PK more consistently than a psychic can” (p. 126). Rogo’s committee concept came from Owen with Sparrow’s (1986) so-called Philip group, which formed in Toronto during the early 1970s. The Philip group experimenters were essentially testing the PK by committee hypothesis. None of the members in the group claimed to be psychic; this was intentional in order to show (given the demonstration of a psi effect) that the combined will of ordinary people could be focused to generate a spiritual entity. This entity was supposed to be a manifestation or thought-form akin to the ectoplasm that is generated by mediums while in a trance state. Having failed to achieve that goal, the Philip group later attempted, with success, other PK effects, such as table-raps and table-tilting.

The so-called Spenser Group in Adelaide, South Australia, was based on Owen and Sparrow’s Philip group (see Storm & Mitchell, 2003). The Spenser group was comprised of professional and amateur paranormal researchers, who attempted to achieve effects similar to those produced by the Philip group. During the Spenser group sessions, some tests of telepathy were conducted as a form of psychic warm-up. After the demise of the group, some of the members decided to continue conducting telepathy tests and other psi-type experiments on an irregular basis. At the same time, the idea also came up to attempt some remote viewing.
Since the experimenter (LS) wanted to use ex-members of the Spenser group, there were two problems that needed to be resolved. First, in spite of the relatively strong effect size (compared to other domains in parapsychology), Targ and Puthoff often used selected individuals like Pat Price who had professed and demonstrated psychic ability, whereas the Philip and Spenser groups used individuals who made no claims to having psychic ability. Second, due to the number of people from the defunct Spenser group who wanted to participate in these RV experiments, a decision had to be reached regarding who would be the agent(s) (i.e., ‘out-bounders’) and who would be the percipient(s) in the RV trials.

In consideration of these two problems, it occurred to the author that for the sake of expediency, and as a means by which to test a variation of Rogo’s committee effect, a group of agents and percipients who do not claim to be psychic could be used to test, not PK, but ESP (specifically, RV). The author considered it reasonable to conjecture that a group of non-psychics could produce a stronger RV effect and do so more consistently than a single non-psychic agent could. It was decided that the performance of a single-agent (Mode 1) would be tested against that of a three-agent committee (Mode 2). In both modes, three percipients would be used, and the individual mentations about each site would be combined into a single mentation pertinent to that site, which was to be ranked by an independent judge.

In the initial (pilot) study (Stage 1), the experimenter identified problems in visualization protocols. Percipients in subsequent studies were therefore instructed to formalize their visualization techniques amongst themselves with advice from LS. This instruction was necessary as some percipients seemed to have deployed protocols that may have encouraged retrocognition and precognition rather than real-time remote viewing (see italicized text in bold in APPENDIX A). Therefore, in Stage 2, percipients were instructed to visualize at all times during the perceiving mode where the agent(s) were at that time (i.e., “right now”), and/or imagine what the agent(s) might be seeing, feeling, hearing, etc., during his (their) presence at the target sites (see APPENDIX B for the protocols). This instruction would bring about, not a change from a negative attitude to a positive attitude, but a change in focus of the percipients’ efforts. As a consequence of the fact that the orientation or attitude of the percipients towards the targets would be considerably different between the two stages (in this case, brought into clearer focus and made more specific because percipients were given instructions to remote view only those sites where the agent(s) were in the present, not the past or future), it was decided to introduce another hypothesis into the experiment. This hypothesis was proposed to test the pro attitude concept, which is a component of Thalbourne’s theory of psycho-
praxia (Thalbourne, 2002; see also Storm & Thalbourne, 2000). Thalbourne (2002) theorized that "a person may be said to have a pro attitude towards state S when they would . . . prefer S rather than ¬S [not S] if those two alternatives were to be brought to their attention" (p. 65). A person can have a pro attitude towards certain "goals, desires, wishes, intentions, needs, preferences, and dispositions, be they conscious or unconscious" (Storm & Thalbourne, 2000, p. 280). Since percipients were given instructions to alter their visualization techniques, which involved asking for answers to specific questions about the targets (see Appendix B), it could be argued that their more specific pro attitudes towards remote-viewing the targets in the present would enhance signal recognition and minimize the noise of retrocognition and/or precognition (see Hypothesis 2 below).

Hypotheses

The following hypotheses were proposed (tests used are in parentheses):

1: The three-agent mode produces a stronger RV effect than the single-agent mode. Respective modes and/or stages will be compared, and will be combined subject to the results of those comparisons. (Tests used will be the direct count of permutations² (Burdick & Kelly, 1977; Schlitz & Gruber, 1980); the effect size formula $ES = z/\sqrt{n}$ to calculate ES values, and a formula given in Solvyn et al. (1978, p. 105.) for the difference between z scores, $z_{\text{diff}} = (z_i - z_j)/\sqrt{2}$.)

2: The RV effect in Stage 2 will be stronger than the RV effect in Stage 1. (Tests used will be the direct count of permutations, and the z_{diff} formula.)

3: Effect sizes will replicate the mean effect size of the free-response (GESP/remote-viewing) domain of $ES = 0.17$ (see Milton, 1998). (Tests used will be the direct count of permutations, the ES formula [z/\sqrt{n}], and the z_{diff} formula.)

Method

Participants

Seven people (two females and five males), including the first author/experimenter (LS), participated in this experiment. Three participants volunteered to be percipients: Alison Bruer (AB), Jeff Fausch (JF), and Colin Mitchell (CM). Lance Storm (LS) chose to be the sole

² The author thanks Professor Suitbert Ertel for calculating the direct counts.
agent in Mode One. There were three agents in Mode Two: LS and two others, Cheryl Hyland (CH) and Ashley Harbutt (AH). The independent judges were Michael A. Thalbourne (MT) and Ray Pasetto (RP).

Apparatus

One battery-operated quartz wristwatch (worn by the agent) synchronized to the exact second to a VCR clock; one cellular mobile phone; random number tables (Pagano, 1986, pp. 479–480); a set of 40 sealed opaque envelopes, each containing a piece of note-paper folded in half with site location and address written on it; pencils and paper; motorcar for agent(s) to travel to the various locations. Envelopes were kept hidden in LS’s office. For each of the 4 sessions, there was a set of 10 envelopes from which to draw the target site to be visited. The envelope was not replaced.

Procedure

There were two stages to this study, consisting of two modes in each stage. The first stage was a familiarization stage, and the second stage was the experiment proper. In Stage 1, agents and percipients ran through the various components of the experiment, primarily to identify problems in experimental design, logistics of the methodology (e.g., whether it was possible to visit all the locations within the time allocated for travel, etc.), and protocols to be used in the visualization techniques (see APPENDIX A for the individual protocols that were followed by percipients in Stage 1). The experimenter (LS) identified problems in visualization protocols, so percipients were instructed to formalize their visualization techniques amongst themselves with advice from LS (see APPENDIX B).

Five sites were planned for each mode, yielding 10 targets in total for each stage. Sites were selected randomly from within a 5-kilometer radius around the home of the experimenter (LS). Selection of locations for the pool of possible targets was semi-random. LS, facing away from a map of metropolitan Adelaide so that he could not see the map, used a pencil to mark randomly a location within a circle (radius: 5 kms.). Nonrandomly, the nearest convenient location was identified on the map as a target since the pencil mark would often indicate a featureless park or body of water.

5 See Procedure section, below. Note that using the experimenter as one of the agents is recommended procedure because it eliminates agent-percipient collusion in its various forms. See Rhine & Pratt, 1957/1962, p. 161.
The schedule of events was as follows:

Step 1: The agent(s) left the home of LS and AB in the motorcar.

Step 2: At a convenient stop while on the road, LS in Stage 1 or one of the agents other than LS in Stage 2 selected at random (using Paganos’s, 1986, random number tables) one of the ten numbered envelopes, which gave details of the destination. Site information could never be leaked to percipients as agent(s) did not learn of the target site until they were outbound in the car.

Step 3: The agent(s) headed for the destination at the usual time of 2:00 P.M. for the first destination; 2:25 P.M. for departure to the second destination, etc. Twenty minutes was the agreed upon time allowed for travel. AB was contacted by mobile phone and the time was adjusted if there were delays in transit due to traffic jams (or if it looked as though the agents would arrive early because traffic flow was minimal). By introducing this quasi-random element to the amount of time taken to get to the target sites, the traffic variable helped eliminate possible time-cues that might help percipients pinpoint the target location.

Step 4: Upon arrival at the destination, agent(s) waited until the pre-designated time (e.g., 2:20 P.M. for the first target) and then viewed the target for five minutes with specific focus on the target as written on the piece of note-paper. Meanwhile, percipients kept their eyes on the synchronized clock so that they knew exactly when to start (i.e., first target: 2:20 P.M.; second target: 2:45 P.M., etc.). During the five minutes, each percipient wrote down his/her thoughts or words, and/or drew pictures of images that came into their minds. Percipients worked alone and did not consult with each other in order to keep the mentations unique.

Step 5: After five minutes at the site, agent(s) followed the procedure in the schedule from Step 2 above, until five sites had been visited.

Step 6: At a later date, the experimenter (LS) transcribed the three recipient’s mentations for each site into one single printed document for the independent judges to use in Step 7. Only one copy was made, which the judges used. The transcripts were complete versions of the original mentation reports. No mentation gave clues as to the temporal order of the targets (see Marks & Kammann, 1978). Mentation reports and transcripts were inspected by an independent assessor; a psychologist, Brian Williams (BW), from the Department of Psychology, University of Adelaide, who endorsed them as true and accurate representations of the original mentation reports. BW was blind to the targets. In each mode, there were five sets of transcripts (one set for each site containing one target page and four decoy pages which were the transcripts for the other targets). The five pages were randomized and stapled together before departure to the sites, and the five sets of five pages were presented randomly to the judge. In other words, the tran-
script that would correspond to the actual target site appeared at random within each five-page set.

Step 7: In Stage 1, the independent judge (MT) was taken to the various sites by LS in the motorcar. Although LS accompanied MT to the site, LS left the vicinity of MT while MT ranked the targets. LS never spoke to MT or communicated in any other way with him during the ranking procedure, nor could he from the distance at which he stood. MT had his eyes down on the transcriptions (for checking purposes) all the time, except for the times that he looked up to look at the targets. LS stood behind and at a considerable distance from MT and therefore could not be seen by him. When MT had finished his task, he called to LS to indicate that he was finished. Sensory leakage, however, might still be a problem with this judging procedure. Wiseman and Milton (1998, pp. 304-305) criticized an experiment by Lantz et al. (1994) because, before the judging, the judge was in contact with someone who knew the targets. Therefore, in Stage 2, transcriptions were judged by a different independent judge (RP) who drove himself unaccompanied to all 10 sites. RP only learned about the RV experiment at the time he was approached by LS to be a judge. He had only just returned from interstate prior to being approached by LS.

At each site, the respective judge read through the mentation reports. Neither was able to discern the individual mentations of any of the three percipients. Nor was either judge able to determine which mode (single or committee) was being tested. At each site, respective judges ticked or crossed off the mentation items listed on each of five sheets (one sheet contained target items, and the other four sheets contained decoy items from the other four targets).

Step 8: Judges calculated total correct scores for all lists, which were converted into percentages. LS ranked the lists according to the size of the percentage score. The highest percentage score was ranked '1', meaning the mentation described the site the most accurately. The four other percentage scores were ranked second, third, fourth and fifth, according to their sizes.

Step 9: The direct-count-of-permutations method was used because the targets were not independent (see Burdick & Kelly, 1977). Four 5x5 matrices (5 targets by 5 responses) were prepared—one for each mode. The observed ranks appeared in the diagonals (running down from top-left to bottom-right). Each diagonal was summed. These four figures were the test statistics for the four modes. There are 5! (i.e., 120) possible permutations in any given 5x5 matrix. The theoretically possible permutation of ranks in a diagonal for each of 120 matrices are calculated and summed. (Suitbert Ertel wrote the computer program which calculated these permutations, and then summed the diagonals.) The probability \(p \) for each matrix is the total number of summed-ranks
that are less than, or equal to, each test statistic divided by 120. P values were calculated by LS, which were converted to corresponding z scores and effects sizes (see RESULTS section).

RESULTS

Preliminary Findings

Stage 1 and Stage 2 were run successfully to completion as planned. Agents(s) arrived on time at virtually all sites, and on those occasions when the agent(s) were not on time LS phoned percipient AB just before the allotted time ran out (i.e., before arrival at the target site) to request an extension of 5 or 10 minutes. All three percipients documented their thoughts and imagery for all sites visited by the agent(s). Generally, 20 minutes proved to be ample traveling time between sites in a metropolitan area of radius 5 kilometers.

Planned Analyses

Hypothesis 1: The three-agent mode produces a stronger RV effect than the single-agent mode. Descriptive data, z scores, and ES values are given in Table 1. Note the negative ES values suggestive of psi-missing in Stage 1 (both modes).

<table>
<thead>
<tr>
<th>Stage and Agent Mode</th>
<th>Mean Rank</th>
<th>z score</th>
<th>$ES = z/\sqrt{n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1, Mode 1 (1 agent)</td>
<td>3.20</td>
<td>-0.62</td>
<td>-0.28</td>
</tr>
<tr>
<td>Stage 1, Mode 2 (3 agents)</td>
<td>3.80</td>
<td>-1.84</td>
<td>-0.82</td>
</tr>
<tr>
<td>Stage 2, Mode 1 (1 agent)</td>
<td>2.60</td>
<td>0.55</td>
<td>0.25</td>
</tr>
<tr>
<td>Stage 2, Mode 2 (3 agents)</td>
<td>1.80</td>
<td>1.73</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Note: Mean Rank$_{perc}$ = 3.00. In all modes, $n = 3$ percipients. *Significant at $p < .05$

In Stage 1, the ES for the single-agent group (Mode 1) was negative and small, and for the three-agent group (Mode 2), the ES was negative and large. The Mode 2 effect was also significant ($p < .05$). RV in this three-agent mode was actually inferior on average to that of the single-agent mode. The directional hypothesis was not supported. (For the purposes of the analyses to be undertaken below in Hypotheses 2 and 3,
the corresponding z scores of the two Stage 1 z values are compared here. The z_{diff} value was not significant, $z_{\text{diff}} = 0.85, p = .198$.

In Stage 2, the ES for the single-agent group (Mode 1) was positive and small, but for the three-agent group (Mode 2), it was positive and large. The Mode 2 effect was also significant ($p < .05$). RV in the three-agent mode was superior to that of the single-agent mode. The directional hypothesis was supported. However, the z_{diff} value was not significant, $z_{\text{diff}} = 0.83, p = .202$. Thus, there is no statistical evidence that the three-agent mode produced a stronger RV effect than the single-agent mode.

Hypothesis 2: The RV effect in Stage 2 will be stronger than the RV effect in Stage 1. This hypothesis was proposed in order to test whether a change in pro attitude can bring about a change in psi performance. In order to test the hypothesis, performance comparisons are made between Stage 1 and Stage 2, and their respective modes, to determine if a change in pro attitude made any difference to the RV effect. Three comparisons are made: (i) Stage 1 and 2 comparisons are made *where modes are combined in their respective stages*; (ii) Mode 1 (Stage 1) with Mode 1 (Stage 2); and (iii) Mode 2 (Stage 1) with Mode 2 (Stage 2).

The z score for Stage 1 (combined modes) is 1.23, and the z score for Stage 2 (combined modes) is 1.14. For (ii) and (iii), respective z scores are taken from Table 1.

(i) Stage 1 and Stage 2 produced a significant z_{diff} of 1.68 ($p = .046$). The hypothesis was supported.

(ii) Mode 1 (Stage 1) and Mode 1 (Stage 2) produced a non-significant z_{diff} of 0.83 ($p = .203$). The hypothesis was not supported.

(iii) Mode 2 (Stage 1) and Mode 2 (Stage 2) produced a significant z_{diff} of 2.52 ($p = .006$). The hypothesis was supported.

Thus, there was evidence of a shift from psi-missing to psi-hitting in (i) and (iii). It appeared that the change in pro attitude had an effect on RV performance, but only in the three-agent mode, suggesting an interaction effect.

Hypothesis 3: Effect sizes will replicate the mean effect size of the free-response (GESP/remote-viewing) domain of ES = 0.17. While two of the four ES values in Table 1 are negative, and therefore do not warrant further testing, it is worth noting that the two positive ES values of 0.25 in Stage 2, Mode 1 ($z = 0.55$) and 0.77 in Stage 2, Mode 2 ($z = 1.73$), should be tested against the domain mean ES norm of 0.17 (mean $z = 0.68$) since 0.25 and 0.77 are in the hypothesized direction and are consistent with the general finding of a positive effect size for the free-response domain. It is expected that the differences will not be significant. For Mode 1, the z score difference was not significantly larger, $z_{\text{diff}} = 0.09, p = .464$. For Mode 2, the z score difference was also not significantly larger, $z_{\text{diff}} = 0.74, p = .230$. Both effect sizes in this study replicate the
strength of effect size for the free-response domain as found in Milton's (1998) meta-analysis.

Post Hoc Analyses

McMoneagle (2000) has stated that RV can be taught. It was conjectured, therefore, that the best RV performance, which was found in Stage 2, Mode 2 (see Table 1), might not be due only to the combined effect of (a) a more precise pro attitude and (b) the use of three agents instead of one, but may be due to a maturity effect resulting in agents and/or percipients getting better with practice. If a maturity artifact does explain the improvement, then an increase in rank scores should be evident (see Column 2, Table 1). A permutations test of 24 possible rankings (4!) showed three decreases (i.e., improvements) in mean rank scores over time, \(r(2) = -0.80, p = .100 \). Therefore, while there may have been a putative improvement in RV performance across time, the improvement may be just a chance fluctuation.

Success Rates

Altogether, there were a total of 7 analyses in the three hypotheses. Two out of 7 were significant, and 2 out of 2 were not significant (as was expected—see Hypothesis 3), so that 4 out of 7 test results could be considered supportive of the proposed hypotheses. This result yields a percentage of 57%, which is greater than 5% and therefore not likely to be the result of chance.

DISCUSSION

The experiment described above started with the simple idea that there might be 'strength in numbers' when it came to producing an RV effect. The author reasoned that the more agents there were, the stronger would be the RV effect, just as two heads are often better than one (though three heads were used in the present study!). However, another old adage has it that a camel is what you get when a committee sets out to design a horse. There was the likely possibility that using more than one agent (as well as more than one percipient) might result in more noise and less signal than might ordinarily be expected. The jumble of ideas originating at the multiple-agent end and concatenated at the multiple-percipient end, might result in an uninterpretable blur of a greater number of images and ideas than would or-

4 A referee of this article provided some references to studies where the multiple-percipient design had already been tested in the free-response condition. These include Braud (1977) and Kanthamani and Khilji (1990).
ordinarily be produced by a single agent. The question that has to be asked, though, is whether the combined mentation of three percipients in a three-percipient/three-agent design really is, or would necessarily be, more uninterpretable than the mentation of a single percipient in a single-percipient/single-agent design.

The fact is, the mentations produced in the typical RV experiment (using a single-percipient/single-agent design) show that the signal-to-noise ratio can often be adversely high anyway, so that RV may often not be all that reliable: McMoneagle (2000) claims that only on five occasions in 25 years has he seen RV exceed 65% reliability, though RV may reach up to 90% accuracy. He would even be “surprised” if his “direct hitting” rate over a given 15-year period exceeded 20-25% (McMoneagle, 1997, p. 216). Furthermore, the examples of unambiguous, or (more often) reasonably accurate hitting cited in the literature are more often exceptions rather than the rule (for examples, see McMoneagle, 2000, pp. 9-18; Targ & Katra, 1999, pp. 27-61). In spite of these ostensibly confounding facts, RV (which is included with the more general free-response domain) has still proved to be one of the most successful experimental domains in parapsychology (see Storm & Thalbourne, 2000). On the basis of that success, it was reasoned that the ideas and images in the mentation reports would not be so unique to each percipient that they would confound the independent judge. Furthermore, the judge, who would be the final arbiter on the issue of interpretation, did not have to sort out analytically which idea/image came from which agent/percipient, but was merely required to think synthetically (i.e., holistically) and come up with single conclusions (later based on rankings) as to the geographical source of those ideas and images.

The more conventional single-agent/single-percipient RV experiment did seem a simpler model to follow, but there was a reasonable hope that Rogo’s committee effect concept could break new ground in RV research. Of course, the only way to validate this concept is to test it, but in the present study there was only suggestive evidence that there was an RV effect produced by a committee if we regard applied RV as needing a positive and strong effect to be of any practical use. Specifically, only Modes 1 and 2 in Stage 2 produced desired rank scores (i.e., in the direction hypothesized—see Hypothesis 1), but only Mode 2 in Stage 2 produced a non-chance effect.

There was also evidence (see Hypothesis 2) that the collective pro attitude of percipients may need to be considered when designing RV experiments in the future. This design consideration would take the form of tighter controls over the protocols that are given to percipients and/or agents.
In conclusion, the results are not absolute that psi may be stronger, more useful for applications-type tasks, and reliably elicited, with a committee of agents than with a single agent. Furthermore, there was no evidence that the pro attitude was a causal feature underlying the psi process for a single agent (although in this study, there was an inferred committee effect). It must be concluded that the multiple-agent/multiple-percipient experiment needs replication before (a) RV by committee and (b) the pro attitude can be taken seriously by experimenters. Given the negative ES values in the present study in both modes of Stage 1, it may be useful to select RV committee-percipients on the basis of their pre-test scores in more ecologically sound psi experiments (S. Ertel, personal communication, June 17, 2003). Regarding the pro attitude, self-attributed and implicit measures of this state of mind are required before relationships can be directly inferred between pro attitude and psi.

REFERENCES

APPENDIX A

AB: First, I imagine that I am in front of a relaxing fire. I feel the warmth and hear the sound and then I let myself slip downwards into my belly. I feel a sense of space and wait for anything that pops into my mind. The other method is to imagine that I am you (or one of the other [agents]) and I try to see what you are seeing.

JF: The first session I tried to work out how far you could go in a set period of time and then think of a location. The second session I tried different methods. I tried thinking of the first thing that popped into my head. I also tried the ‘door’ method—opening a door in my mind and writing down what I saw. The last method I used was trying to sit in [the agent’s] car and try to imagine what I saw through the windscreen.

CM: I simply closed my eyes and focused my attention on my inner thoughts/imagery and wrote down whatever significantly strong images came into my mind. On a couple of occasions, I also had a go at thinking of a particular person amongst the three [agents] to see if I could pick up imagery that particular person might be sending, and then wrote down whatever image I got. But mostly it was just observing whatever images came into my head during the ‘receiving’ period. I discarded some imagery that seemed to be obviously just associations with a particular idea of where you might be (i.e., from my knowledge of those locations).
APPENDIX B

HOW TO REMOTE VIEW

To remote view *during the 5 minutes the agent is sending*, you can do any or all of the following:

1. Imagine that you are the agent (or one of the agents) and try to see what he is (they are) seeing, or hear what he is (they are) hearing, feel what he is (they are) feeling, or even smell what he is (they are) smelling.

2. Imagine sitting in the agent's parked car in view of the target and try to imagine what he or she sees through the windscreen.

3. Think of the agent, or a particular person amongst the three agents, and see if you can pick up the imagery, thoughts, or ideas that particular person might be sending.

4. Every time you do any of the above, or all of the above, say to yourself:
 a. I want to know what he is [or they are] seeing right now.
 b. I want to know what he is [or they are] hearing right now.
 c. I want to know what he is [or they are] feeling right now.
 d. I want to know what he [or they] can smell right now.